STUDY MODULE DE	SCRIPTION FORM		
Name of the module/subject Optional CAD	-	Code 010134221010130660	
Field of study Environmental Engineering Extramural First-	Profile of study (general academic, practical) (brak)	Year /Semester	
Elective path/specialty	Subject offered in: Polish	Course (compulsory, elective) obligatory	
Cycle of study:	Form of study (full-time,part-time)		
First-cycle studies	part-time		
No. of hours		No. of credits	
Lecture: 16 Classes: - Laboratory: 18	Project/seminars:	4	
Status of the course in the study program (Basic, major, other)	(university-wide, from another fiel	d)	
(brak)	(b	orak)	
Education areas and fields of science and art		ECTS distribution (number and %)	
technical sciences		4 100%	
Technical sciences		4 100%	
Responsible for subject / lecturer:	Responsible for subject	/ lecturer:	
dr inż. Rafał Brodziak	mgr inż. Jędrzej Bylka		
email: rafal.brodziak@put.poznan.pl	email: jedrzej.bylka@put.poz	nan.pl	
tel. +48 61 6652443	tel. +48 61 6652443	entel Engineering	
Faculty of Civil and Environmental Engineering ul. Piotrowo 5 60-965 Poznań	Faculty of Civil and Environm ul. Piotrowo 5 60-965 Poznar		
Prerequisites in terms of knowledge, skills and			
1 Knowledge Basic computer science information	Basic computer science information.		
2 Skills Personal computer support, include	onal computer support, including basic knowledge of office programs.		
3 Social Awareness of the need to continu	Awareness of the need to continually update and refine knowledge and skills.		
Assumptions and objectives of the course:			
Familiarize students with computer aided design methods, with engineering.	particular emphasis on its applic	cations in environmental	
Study outcomes and reference to the e	educational results for a	i field of study	
Knowledge:			
1. Student knows the principles of engineering design (obtained	0	, , , , , ,	
 Student understands the principles of storage and processing laboratory exercises) - [K_W07] 	of data in computer systems (c	btained during the lecture and	
3. Student knows the use of a spreadsheet in engineering (obta	ined during the lecture and labo	ratory exercises) - [K_W07]	
4. Student knows the general features and applications of utility lecture and laboratory exercises) - [K_W07]	-		
 Student knows basic programs for engineering calculations in laboratory exercises) - [K_W07] 	n Environmental Engineering (ob	ptained during the lecture and	
Skills:			
1. Student is able to exchange technical information in electronic	c form (obtained during the lectu	ure and laboratory exercises)	
 [K_U02] Student is able to choose the appropriate application for the t the lecture and laboratory exercises) - [K_U07, K_U09] 	ask in the field of environmental	engineering (obtained during	
 Student can use computer-aided design methods for professi exercises) - [K_U15] 	onal activity (obtained during th	e lecture and laboratory	
Social competencies:			
1. Student is aware of the value of information and knowledge (obtained during the lecture and	laboratory exercises) - [K_K07	

Assessment methods of study outcomes

The basic way to check the learning outcomes: in the course of the lecture (K_W07 , K_K07) the written test - multiple choice test and open questions, conducted in the last class.

As part of the laboratory exercises (K_W07,K_U02,K_U07, K_U09,K_U15), a colloquium in the form of working on a computer file in the last classes. Credit threshold: 50%. Detailed scoring criteria and scale are given before the exam.

Course description

Traditional lecture with elements of problem lecture and multimedia presentations, presenting basic information on principles of engineering design and use of computer methods in designing:

- Class computer systems,
- modeling and execution of calculations (introduction to modeling and simulation),
- storing information (introduction to database systems);
- decision support (decision support systems),
- study and evaluation of design solutions,
- creation of technical documentation.

Laboratory classes mainly include the practical use of spreadsheets, engineering calculations through the project method and case studies.

Basic bibliography:

1. Geographic Information Systems and Science 2nd Edition, Paul A. Longley , Michael F. Goodchild , David J. Maguire , David W. Rhind , Wiley, 2005

Additional bibliography:

Result of average student's workload

Activity		Time (working hours)		
1. Attend lectures (hours of contact)		16		
2. Participation in laboratory classes (hours of contact, practical)		18		
3. Preparation for laboratory exercises (self-study)		18		
4. Student's own work, preparation for the final pass (self-study)		48		
Student's workload				
Source of workload	hours	FCTS		

Source of workload	hours	ECTS
Total workload	100	4
Contact hours	34	2
Practical activities	18	1